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Abstract—This paper proposes six face recognition algorithms 
namely Principal Component Analysis(PCA), Two Dimensional 
Principal Component Analysis (2DPCA), Two Dimensional Two 
Directional Principal Component Analysis(2D)
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2PCA, Fourier 
Magnitude(FM-PCA), Fourier Magnitude(FM-2DPCA) and Fourier 
Magnitude (FM-(2D)2PCA). Face recognition in Spatial Domain 
using PCA, 2DPCA and (2D)2PCA can tolerate different facial 
expression of invariant illumination with improved performance over 
the former algorithms. For real time application where mostly facial 
angle rotation are greater than 60° i.e. intra-pose variations, Spatial 
Domain Face recognition algorithm performance reduces because of 
the invisible feature. Frequency domain technique is the solution to 
the described problem along with additional advantages like ability 
to distinguish using magnitude and phase spectrum and easiness to 
go back and forth from spatial domain to frequency domain. 
 
Keywords: PCA, 2DPCA, (2D)2PCA. FM-PCA, FM-2DPCA, FM-
(2D)2

1. INTRODUCTION 

PCA, Normalized Eigenvectors 

Initially Principal component analysis was introduced for 
Statistical analysis but later emerged as the global algorithm 
for object recognition because of its simplicity [1]. In face 
recognition PCA loses image details resulting from 
concatenation process [7]. To improve the performance of 
PCA a new technique called Two Dimensional PCA 
i.e.(2DPCA) is introduced which employs directly on two 
dimensional data without concatenation at the cost of more 
coefficient requirement for image representation. However 
2DPCA loses the covariance information between different 
local geometric structures in the image while PCA preserves 
the information which is important for recognition [7]. In 
order to suppress the large coefficient requirement and attain 
the same or increased accuracy level of 2DPCA, (2D)2

PCA, 2DPCA and (2D)

PCA is 
introduced by incorporating a Two Directional PCA into 
2DPCA [10]. 

2PCA in spatial domain suffers from 
the adverse effect of intra class pose variation which degrades 
the performance of algorithm [9]. In order to obtain a more 
efficient image representation frequency domain is introduced 
which computes the Fourier magnitude of PCA, 2DPCA and 
(2D)2

2. FACE RECOGNITION IN SPATIAL DOMAIN 

PCA [9]. In frequency domain Normalized Eigenvectors 
are computed from the Fourier magnitude covariance matric 
rather than the simple Eigenvectors as in spatial domain and 

corresponding to it a transformation matrix is obtained to 
avoid loss of image generality [11]. Fourier Magnitude feature 
subspaces hold another key advantage. They are shift 
invariant, as a direct result of the properties of Fourier 
transform [8]. If the image is shifted in the spatial domain, that 
shift will translate into a linear phase change in frequency 
domain and not in its magnitude. This makes Fourier 
Magnitude subspaces robust to errors in registration, where the 
input images are not correctly centered which could cause 
significant recognition errors [8]. 

Euclidean distance or the Frobenius distance is used for 
classification for both the algorithm in spatial and frequency 
domain. This paper is focused in improving the accuracy level 
of frequency domain algorithm. The remaining parts of the 
paper are organized as follows. In section 2 face recognition in 
spatial domain is described. In section 3 face recognition in 
frequency domain is described. Experimental results on face 
data bases of NITH, ORL and Yale are presented in section 4. 
We have Conclusion in section 5. And finally 
Acknowledgement in section 6. 

2.1 Principal Component Analysis(PCA) 

Principal component analysis (PCA) is a well-known feature 
extraction and data representation technique widely used in 
the areas of pattern recognition, computer vision and signal 
processing, etc. It extracts relevant information from confused 
data sets [1]. Roughly speaking PCA tries to find the axes with 
maximum variances where the data is most spread (within a 
class, since PCA treats the whole data set as one class). 

Computation of Eigen faces: 

Loading Training Images 

Step 1: Obtain the face images (which should be centered) 
𝐼𝐼1, 𝐼𝐼2, … . . 𝐼𝐼𝑀𝑀  (training images) 

Step 2: Represent every image 𝐼𝐼𝑖𝑖  as a vector Г𝑖𝑖  
Step 3: Compute the average face vector Ψ 
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Ψ = 1
𝑀𝑀
∑ Г𝑖𝑖𝑀𝑀
𝑖𝑖=1    (1) 

Step 4: Subtract the mean face from every image matrix 
individual which produce the Scatter matrix 

𝛷𝛷𝑖𝑖 = Г𝑖𝑖 − Ψ  (2) 

Step 5: Compute the covariance matrix C 

𝐶𝐶 = 1
𝑀𝑀
∑ 𝛷𝛷𝑖𝑖 𝑀𝑀
𝑖𝑖=1 𝛷𝛷 𝑖𝑖𝑇𝑇 = A𝐴𝐴𝑇𝑇  (3) 

where 𝐴𝐴 = [𝛷𝛷1𝛷𝛷2 . . . . . . .𝛷𝛷𝑀𝑀] MXN image dimension; 

M= No. of Class (.i.e. Person) x No. of sample per class 

Step 6: The goal is to compute the eigenvectors 𝑢𝑢𝑖𝑖  of A𝐴𝐴𝑇𝑇 
The matrix A𝐴𝐴𝑇𝑇 is very large and a full eigenvector 
calculation is impractical. So we do Eigen decomposition of 
𝐴𝐴𝑇𝑇A instead of A𝐴𝐴𝑇𝑇. 
The eigenvectors 𝑢𝑢𝑖𝑖  and Eigenvalues 𝜆𝜆𝑖𝑖  of C are such that  

C𝑢𝑢𝑖𝑖 =  𝜆𝜆𝑖𝑖𝑢𝑢𝑖𝑖  (3.1) 
These are related to the eigenvectors 𝑣𝑣𝑖𝑖  and Eigen values 𝜆𝜆𝑖𝑖′  of 
the matrix D=𝐴𝐴𝑇𝑇A in the following way: 

 
𝐷𝐷𝑣𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖 ′𝑣𝑣𝑖𝑖 ,𝐴𝐴𝑇𝑇  𝐴𝐴 𝑣𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖′ 𝑣𝑣𝑖𝑖 , A𝐴𝐴𝑇𝑇  𝐴𝐴 𝑣𝑣𝑖𝑖  =  𝜆𝜆𝑖𝑖′𝐴𝐴𝑣𝑣𝑖𝑖   (4) 
𝐶𝐶𝐴𝐴𝑣𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖 ′𝐴𝐴𝑣𝑣𝑖𝑖 ,𝐶𝐶(𝐴𝐴 𝑣𝑣𝑖𝑖) = 𝜆𝜆𝑖𝑖′ (𝐴𝐴𝑣𝑣𝑖𝑖),𝐶𝐶 𝑢𝑢𝑖𝑖  =  𝜆𝜆𝑖𝑖′𝑢𝑢𝑖𝑖   (5) 

So the Eigen vectors and Eigen values of C can be computed 
as 

𝑢𝑢𝑖𝑖 = 𝐴𝐴𝑣𝑣𝑖𝑖 , 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖′   (6) 
 

Thus, 𝐴𝐴𝐴𝐴𝑇𝑇and 𝐴𝐴𝑇𝑇𝐴𝐴 have the same eigenvalues and their 
eigenvectors are related as follows: 
 𝑢𝑢𝑖𝑖 = 𝐴𝐴𝑣𝑣𝑖𝑖 , 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖′  

Step 7: Keep only K eigenvectors (corresponding to the K 
largest eigenvalues). Eigenvectors may not be equal to the 
zero vector. A nonzero scalar multiple of an eigenvector is 
equivalent to the original eigenvector. Hence, without loss of 
generality eigenvectors are often normalized to unit length. So 
Normalized Eigenvector is optional if there is no loss of image 
generality. 

Projection on Eigen faces  

𝛺𝛺𝑗𝑗 = ∑ 𝑤𝑤𝑗𝑗𝑢𝑢𝑗𝑗𝐾𝐾
𝑗𝑗=1 ; 𝑤𝑤𝑗𝑗 = 𝑢𝑢𝑗𝑗𝑇𝑇𝛷𝛷𝑗𝑗   (7) 

 
we call the 𝑢𝑢𝑗𝑗 ’s Eigen faces 

Face Recognition Using Eigen faces 
Given an unknown test face image Г𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (centered and of the 
same size like the training faces) follow these steps: 

Normalize 𝛷𝛷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Г𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  Ψ  (8) 

Project on the Eigen space 
𝛺𝛺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖𝑢𝑢𝑖𝑖𝐾𝐾

𝑖𝑖=1 ; 𝑤𝑤𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑇𝑇𝛷𝛷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   (9) 

Find 𝑡𝑡𝑟𝑟 = min (‖𝛷𝛷𝑖𝑖 − Φ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖) ( 10) 

The distance 𝑡𝑡𝑟𝑟  is called Euclidean distance within the face 
space (differences). 

A. Two Dimensional Principal Component (2DPCA) 
In the PCA-based face representation and recognition 
methods, the 2D face image matrices must be previously 
transformed into 1D image vectors column by column or row 
by row. However, concatenating 2D matrices into 1D vectors 
often leads to a high-dimensional vector space, where it is 
difficult to evaluate the covariance matrix accurately due to its 
large size and the relatively small number of training samples 
[7]. Furthermore, computing the eigenvectors of a large size 
covariance matrix is very time-consuming. 

To overcome those problems, a new technique called 2-
dimensional principal component analysis (2DPCA) was 
recently proposed, which directly computes eigenvectors of 
the so-called image covariance matrix without matrix-to-
vector conversion. Because the size of the image covariance 
matrix is equal to the width of images, which is quite small 
compared with the size of a covariance matrix in PCA, 
2DPCA evaluates the image covariance matrix more 
accurately and computes the corresponding eigenvectors more 
efficiently than PCA. It was reported in that the recognition 
accuracy on several face databases was higher using 2DPCA 
than PCA, and the extraction of image features is 
computationally more efficient using 2DPCA than PCA. 
However, the main disadvantage of 2DPCA is that it needs 
many more coefficients for image representation than PCA 
[7]. Here we consider that the 2DPCA is working in row 
direction of image. 

Consider A an m by n random image matrix. 

Let X ϵ 𝑹𝑹𝒏𝒏 be a matrix with orthonormal columns, n ≥ d. 
Image matrix  

𝐴𝐴𝑘𝑘 = [𝐴𝐴𝑘𝑘1  𝐴𝐴𝑘𝑘2  . . .𝐴𝐴𝑘𝑘𝑚𝑚 ] 

and average of image matrix be  

�̅�𝐴 = �𝐴𝐴1��� 𝐴𝐴2��� . . . .𝐴𝐴𝑚𝑚����� 

Projecting A onto X yields an m by d matrix Y=AX. In 
2DPCA, the total scatter of the projected samples is used to 
determine a good projection matrix X. 
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The image covariance matrix G which is an n by n matrix is 
nonnegative definite matrix. Suppose that there are M training 
face images, denoted by m by n matrices  

𝐴𝐴𝑘𝑘(𝑘𝑘 = 1, 2, … . . M) and �̅�𝐴 denote the average image as 

�̅�𝐴 =
1
𝑀𝑀
∑ 𝐴𝐴𝑘𝑘𝑀𝑀
𝑘𝑘=1   

Then G can be evaluated by  

𝐆𝐆 = 1
𝑀𝑀
∑ (𝐴𝐴𝑘𝑘 − �̅�𝐴)𝑇𝑇(𝐴𝐴𝑘𝑘𝑀𝑀
𝑘𝑘=1 − �̅�𝐴)  (11) 

It has been proven that the optimal value for the projection 
matrix 𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡  is composed by the orthonormal eigenvectors 
𝑋𝑋1 𝑋𝑋2 … …𝑋𝑋𝑑𝑑  of G corresponding to the d largest 
eigenvalues, i.e. 𝑋𝑋𝑜𝑜𝑜𝑜𝑡𝑡 = [𝑋𝑋1 … …𝑋𝑋𝑑𝑑 ] Because the size of G 
is only n by n, computing its eigenvectors is very efficient. 

B. Alternate 2DPCA 
Let 𝐴𝐴𝑘𝑘 = [(𝐴𝐴𝑘𝑘1 )𝑇𝑇  (𝐴𝐴𝑘𝑘2 )𝑇𝑇 . . . . (𝐴𝐴𝑘𝑘𝑚𝑚)𝑇𝑇]𝑇𝑇 and  

�̅�𝐴 = [�𝐴𝐴𝑘𝑘1�����
𝑇𝑇

 �𝐴𝐴𝑘𝑘2�����
𝑇𝑇

… . (𝐴𝐴𝑘𝑘𝑚𝑚����)𝑇𝑇]𝑇𝑇  be the image column 
matrix. 2DPCA and alternative 2DPCA only works in the row 
and column direction of images respectively. That is, 2DPCA 
learns an optimal matrix X from a set of training images 
reflecting information between rows of images, and then 
projects an m by n image A onto X, yielding an m by d matrix 
Y=AX. Similarly, the alternative 2DPCA learns optimal 
matrix Z reflecting information between columns of images, 
and then projects A onto Z, yielding a q by n matrix B = 𝑍𝑍𝑇𝑇X. 

The image covariance matrix G can be obtained from the 
outer product of row vectors of images, assuming the training 
images have zero mean, i.e. �̅�𝐴 = (0)𝑚𝑚𝑚𝑚𝑚𝑚 . For that reason, 
we claim that original 2DPCA is working in the row direction 
of images. Then alternative covariance matrix G can be 
evaluated by  

𝐆𝐆 = 1
𝑀𝑀∑ (𝐴𝐴𝑘𝑘

𝑀𝑀
𝑘𝑘=1 −𝐴𝐴�)(𝐴𝐴𝑘𝑘 −𝐴𝐴�)𝑇𝑇  (12) 

Similarly, the optimal projection matrix can be obtained by 
computing the eigenvectors 𝑍𝑍1 𝑍𝑍2  … .𝑍𝑍𝑞𝑞  Corresponding to 
the q largest eigenvalues, i.e. 𝑍𝑍𝑜𝑜𝑜𝑜𝑡𝑡 = �𝑍𝑍1  … . .𝑍𝑍𝑞𝑞�. Because 
the eigenvectors only reflect the information between columns 
of images, we say that the alternative 2DPCA is working in 
the column direction of images. 

Two Directional Two Dimensional PCA, (2𝐷𝐷)2𝑃𝑃𝐶𝐶𝐴𝐴 

A simultaneously way of presenting 2DPCA and Alternate 
2DPCA is (2D)2PCA which uses the projection matrices X 

and Z of 2DPCA and Alternate 2DPCA respectively. 
(2D)2PCA Preserves the accuracy of 2DPCA but eliminates 
the large number of coefficient requirement of 2DPCA [10]. 
Suppose we have obtained the projection matrices X and Z, 
projecting the m by n image A onto X and Z simultaneously, 
yielding a q by d matrix 𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚  

𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚 = ZTAX 

The matrix 𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚  is also called the coefficient matrix in image 
representation, which can be used to reconstruct the original 
image A. When used for face recognition, the matrix 𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚  is 
also called the feature matrix. After projecting each training 
image 𝐴𝐴𝑡𝑡𝑟𝑟𝑚𝑚 (𝑡𝑡𝑟𝑟𝑚𝑚 = 1, 2, … . . M) onto X and Z, we obtain 
the training feature matrices 𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚 (𝑡𝑡𝑟𝑟𝑚𝑚 = 1, 2, … . . M). 
Repeating the same for test image 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  we get the test 
feature matrix 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . Then the nearest neighbor classifier is 
used for classification. Here the distance between 
𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚  𝑎𝑎𝑚𝑚𝑑𝑑 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is defined by 

𝑑𝑑(𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚,𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = ‖𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚 − 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖  

 = �∑ ∑ (𝐶𝐶𝑡𝑡𝑟𝑟𝑚𝑚
(𝑖𝑖,𝑗𝑗) −𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑖𝑖,𝑗𝑗))
2

𝑑𝑑
𝑗𝑗=1

𝑞𝑞
𝑖𝑖=1    (13)  

3. FACE RECOGNITION IN FREQUENCY DOMAIN 

In this section, we develop Fourier magnitude versions of 
PCA, two-dimensional PCA algorithms (2DPCA), (2D)

2

1. Fourier Magnitude PCA 

PCA 
by using the Fourier magnitudes of the image pixels for 
feature extraction instead of the raw pixel values. Instead of 
the scatter matrix in equation 2 of spatial domain we will use 
the image matrix in Frequency domain [11]. 

Although PCA is a widely used technique for face recognition, 
it has major drawbacks of losing the image details, having a 
large time complexity and suffering from the adverse effect of 
intra class pose variations [9]. To overcome the intra class 
drawback in PCA, Fourier magnitudes are employed for the 
feature extraction step of the PCA algorithm in FM-PCA. 

The algorithm computation in frequency domain is same as 
spatial domain except the extra calculation of normalized 
eigenvectors and its use in place of the simple eigenvectors to 
avoid any intrusion of information from the original image. 

2. Fourier Magnitude 2DPCA 

The huge number of coefficient requirement of 2DPCA in 
spatial domain will exist in frequency domain FM-2DPCA 
also but the accuracy level gets boosted up because of the two 



Gaiga Matthew Ruangmei, Amit Kaul and R. Nath Sharma 
 

 

Journal of Basic and Applied Engineering Research 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 5; January-March, 2015 

348 

new modified steps as compared to the spatial domain [7] & 
[9]. 

The Fourier magnitudes for the pixels of an image are first 
computed. The magnitudes of the Fourier coefficients for the 
𝑖𝑖𝑡𝑡ℎ  training image 𝐼𝐼𝑖𝑖  can be represented as an MxN matrix 
given by 

𝐼𝐼𝐹𝐹𝑀𝑀
(𝑖𝑖)  =  �𝐼𝐼𝐹𝐹𝑀𝑀

(𝑖𝑖) (𝑢𝑢, 𝑣𝑣)�
𝑀𝑀𝑚𝑚𝑀𝑀

 

Similarly the FM version of a test image  
𝐼𝐼𝐹𝐹𝑀𝑀

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )  =  �𝐼𝐼𝐹𝐹𝑀𝑀
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )(𝑢𝑢, 𝑣𝑣)�

𝑀𝑀𝑚𝑚𝑀𝑀
 

This Fourier coefficients of training and test images are to be 
used in place of the difference matrix which were used in 
spatial domain algorithms. The Fourier magnitude matrices of 
the training images are also used to obtain the covariance 
matrix of FM-2DPCA as 

𝐶𝐶𝐹𝐹𝑀𝑀−𝑟𝑟2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴 = 1
𝐾𝐾
∑ �𝐼𝐼𝐹𝐹𝑀𝑀

(𝑖𝑖) − 𝐼𝐼𝐹𝐹𝑀𝑀������
𝑇𝑇𝐾𝐾

𝑖𝑖=1 (𝐼𝐼𝐹𝐹𝑀𝑀
(𝑖𝑖) − 𝐼𝐼𝐹𝐹𝑀𝑀�����)   (14) 

 
where K is the number of training samples and 𝐼𝐼𝐹𝐹𝑀𝑀����� is the 
average of the training images and is given by 

𝐼𝐼𝐹𝐹𝑀𝑀����� = 1
𝐾𝐾
∑ 𝐼𝐼𝐹𝐹𝑀𝑀

(𝑖𝑖)𝐾𝐾
𝑖𝑖=1    (15) 

After calculating the eigenvalues and eigenvectors from the 
Covariance matrix the eigenvectors are normalized and 
rearranged in descending order of the corresponding 
eigenvalues. A transformation matrix 

𝑉𝑉𝐹𝐹𝑀𝑀 = �𝑉𝑉𝐹𝐹𝑀𝑀1 𝑉𝑉𝐹𝐹𝑀𝑀2 … .𝑉𝑉𝐹𝐹𝑀𝑀𝐹𝐹 � is obtained from the Normalized 
Eigenvectors of 𝐶𝐶𝐹𝐹𝑀𝑀−𝑟𝑟2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴 . The Projection matrix for the 𝑖𝑖𝑡𝑡ℎ  
training sample and test sample are given respectively as,  

𝑍𝑍𝐹𝐹𝑀𝑀
(𝑖𝑖)  =  𝐼𝐼𝐹𝐹𝑀𝑀

(𝑖𝑖)𝑉𝑉𝐹𝐹𝑀𝑀    (16) 

𝑍𝑍𝐹𝐹𝑀𝑀
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )  =  𝐼𝐼𝐹𝐹𝑀𝑀

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )𝑉𝑉𝐹𝐹𝑀𝑀    (17) 

For classification module of the FM-2DPCA algorithm, matrix 
similarity measures, such as the Euclidean or Frobenius 
distance is used,  

 𝑑𝑑𝐹𝐹𝑀𝑀�𝑍𝑍𝐹𝐹𝑀𝑀
(𝑖𝑖) ,𝑍𝑍𝐹𝐹𝑀𝑀

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )� = �∑ ∑ (𝑍𝑍𝐼𝐼𝑡𝑡ℎ
(𝑖𝑖,𝑗𝑗 ) − 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑖𝑖,𝑗𝑗 ))2𝑑𝑑
𝑗𝑗=1

𝑞𝑞
𝑖𝑖=1   (18) 

 
The wanted person is said to be identified if the subject (.i.e. 
distance) of the training sample whose feature matrix has the 
shortest distance from the test image feature matrix. 

I. Fourier MagnitudeTwo Directional 2DPCA 
It is the highest accuracy algorithm with reduced coefficient 
requirement and preserving the accuracy attained and also 
removing the intra pose problem [7], [9] & [10]. In FM −
(2D)2PCA algorithm the row-directional transformation 
covariance matrix is computed using 𝐶𝐶𝐹𝐹𝑀𝑀−𝑟𝑟2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴  and its 
column-directional counterpart is computed as 

𝐶𝐶𝐹𝐹𝑀𝑀−𝑐𝑐2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴 = 1
𝐾𝐾
∑ (𝐼𝐼𝐹𝐹𝑀𝑀

(𝑖𝑖) − 𝐼𝐼𝐹𝐹𝑀𝑀�����)�𝐼𝐼𝐹𝐹𝑀𝑀
(𝑖𝑖) − 𝐼𝐼𝐹𝐹𝑀𝑀������

𝑇𝑇𝐾𝐾
𝑖𝑖=1  (19) 

The eigenvalues and eigenvectors of 𝐶𝐶𝐹𝐹𝑀𝑀−𝑟𝑟2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴  and 
𝐶𝐶𝐹𝐹𝑀𝑀−𝑐𝑐2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴  are then computed. Then the Eigenvectors are 
normalized and arranged in descending order of the 
corresponding eigenvalues. Then, the row-directional and 
column directional transformation matrices 

𝑉𝑉𝐹𝐹𝑀𝑀 = �𝑉𝑉𝐹𝐹𝑀𝑀1 𝑉𝑉𝐹𝐹𝑀𝑀2 … .𝑉𝑉𝐹𝐹𝑀𝑀𝐹𝐹 �   (19.1) 

and  
𝑈𝑈𝐹𝐹𝑀𝑀 = ⟦𝑈𝑈𝐹𝐹𝑀𝑀1 𝑈𝑈𝐹𝐹𝑀𝑀2 … .𝑈𝑈𝐹𝐹𝑀𝑀𝐹𝐹⟧   (19.2) 

 are obtained using sufficient numbers of the Normalized 
Eigenvectors of 𝐶𝐶𝐹𝐹𝑀𝑀−𝑟𝑟2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴  and 𝐶𝐶𝐹𝐹𝑀𝑀−𝑐𝑐2𝐷𝐷𝑃𝑃𝐶𝐶𝐴𝐴 , respectively. 
Then the Projection matrix for the 𝑖𝑖𝑡𝑡ℎ  training sample and test 
sample are given respectively as,  

𝑍𝑍𝐹𝐹𝑀𝑀
(𝑖𝑖)  =  𝑈𝑈𝐹𝐹𝑀𝑀𝑇𝑇 𝐼𝐼𝐹𝐹𝑀𝑀

(𝑖𝑖)𝑉𝑉𝐹𝐹𝑀𝑀    (20) 

And 

𝑍𝑍𝐹𝐹𝑀𝑀
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )  =  𝑈𝑈𝐹𝐹𝑀𝑀𝑇𝑇 𝐼𝐼𝐹𝐹𝑀𝑀

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )𝑉𝑉𝐹𝐹𝑀𝑀    (21) 

4. EXPERIMENTAL RESULTS 

Simulations are performed on a 1.70 GHz Intel(R) 
Premium(R) 3558U CPU with 4GB RAM and Windows 8 
operating system. Simulations are carried out using MATLAB. 
The algorithm are tested on benchmark face database ORL 
(Olivetti Research Lab, Cambridge Univ), YALE and NITH 
(National Institute of Technology, Hamirpur) face database. In 
ORL database there are 40 individual classes with 10 samples 
each. The first 5 samples of each classes are used for training 
images and the remaining for test images. In YALE and NITH 
database there are 50 individual classes with 12 samples each. 
The same treatment is done for YALE and NITH as with the 
ORL database. All the facial images from the three database 
has illumination variation. The YALE database are mainly 
concerned with different facial expression but with no intra 
pose variation of all the classes whereas the NITH facial 
database has maximum intra pose variation as compared to the 
remaining two database. The two tables given below are the 
results achieved from the MATLAB simulation experiments 
for all the Database with the algorithms. 
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Accuracy achieved: 
Spatial Domain 

Methods 
NITH ORL YALE 

PCA 72.667% 78% 92.50% 
2DPCA 78.667% 90% 95.667% 
(2D)2PCA 78.667% 90% 95.667% 

 
Accuracy achieved: 

Frequency 
Domain 
Methods 

NITH ORL YALE 

FM-PCA 80.333% 81% 96.333% 
FM-2DPCA 91.667% 96.50% 100% 
FM-(2D)2PCA 91.667% 96.50% 100% 

 
Given below is the accuracy graph of all the Database which a 
comparison of Spatial Domain and Frequency Domain for 
PCA and 2DPCA algorithm. Since (2D)2PCA has the same 
accuracy level of 2DPCA so it is not plotted though (2D)2PCA 
requires lesser number of computational time as compared to 
the 2DPCA algorithm because (2D)2

 

PCA requires lesser 
number of coefficient as compared 2DPCA. 

 

 

5. CONCLUSION 

The enhanced accuracy level in frequency domain is achieved 
due to substitution of two new steps: 

a) Scatter image matrix from equation (2) replaced with the 
Image matrix. 

b) The ability to distinguish seperately using the magnitude 
spectrum in the frequency domain algorithm. 

As an overall result we have seen that the YALE Database 
which has only different facial expression under invariant 
illumination environment has the highest accuracy in both the 
domain analysis, but under intra pose variation with mild and 
extreme level of face angle rotation in ORL and NITH 
database respectively, the accuracy level in Spatial domain is 
low. When we analysed the same in Frequency domain the 
efficiency level in improved. 
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